Окисление и восстановление

«Любая самая отвлеченная наука видит оправдание своего существования в надежде оказаться полезной человечеству в качестве науки прикладной», - говорил Оствальд, и эти его слова целиком применимы к современной химии. За какие-нибудь два столетия она приобрела такое большое значение в жизни общества, что можно было бы подумать, будто химики нашли наконец «философский камень», который тщетно искали их предшественники алхимики, и с его помощью создают теперь ежегодно сотни новых веществ, определяющих прогресс промышленности, сельского хозяйства и медицины. Кого теперь удивишь таким известным и, казалось, старым производством, как производство хлора и едкого натра.

Но электролиз хлоридов еще долго будет в числе важнейших промышленных методов: продукты этого производства хлор, едкий натр (каустическая сода) и водород являются ценным сырьем для химической промышленности. Хлор идет на производство отбеливателей (хлорной извести и тому подобных веществ), соляной кислоты, многих органических растворителей; он является исходным сырьем для производства пластических масс, синтетических волокон, продуктов сельскохозяйственной химии, для дезинфекции (хлорирование воды). Каустическая сода тоже используется при производстве пластмасс и синтетических волокон, а также инсектицидов, глицерина, продуктов целлюлозно-бумажной промышленности.

Производство хлора и щелочи исчисляется ежегодно десятками миллионов тонн, и на него расходуется около 100 миллиардов киловатт-часов электроэнергии. Почти весь хлор - 99 процентов! - производится электрохимическим способом. Этот традиционный для электрохимии способ производства постоянно совершенствуется. Когда-то, например, при электролизе рассолов поваренной соли применялись ртутные катоды, но с увеличением цен на ртуть выгоднее стал диафрагменный электролиз. На смену графитовым анодам пришли более стойкие аноды, содержащие окислы титана, рутения и других элементов. Их применение повысило стабильность электролиза, чистоту продуктов и снизило энергоемкость процесса.

Такова судьба наиболее крупного электрохимического производства - технического способа электролиза хлоридов, запатентованного еще в 1879 г. русским изобретателем Николаем Гавриловичем Глуховым и его сотрудником Федором Ващуком.

Свободный фтор был получен в 1886 г. французским химиком Анри Муассаном (1852-1907). Получил Муассан его электролизом расплавленных солей фтористоводородной кислоты, и с тех пор электрохимический метод остался единственным способом производства этого самого активного из неметаллических соединений.

Фтор идет на производство растворителей, смазочных масел, стойких пластмасс. Используют его также и как окислитель жидкого ракетного топлива. Обогащать урановое топливо невозможно без шестифтористого урана, получаемого из электролизного фтора.

Электрохимическим путем получают не только галоиды - хлор и фтор. Электролиз боратов дает нам бор, необходимый для изготовления износостойкой стали и мелкозернистых цветных металлов, абразивных материалов, защиты от нейтронного излучения.

Ценнейший химический продукт водород, широко используемый в металлургии - для прямого восстановления руд, в химии - для производства аммиака, удобрений, синтетических волокон, моющих средств, в машиностроении и строительстве - для сварки и резки металлов, получают в основном при конверсии природных газов и при производстве хлора и других окислителей.

Электролизом воды, а точнее, растворов щелочей для получения водорода пользуются только там, где имеется дешевая электроэнергия, хотя преимущества такого способа получения водорода были ясны еще в 1888 г., когда русский физик и электротехник Дмитрий Александрович Лачинов (1842-1902) разработал первый электролизер. Электролитический водород не содержит никаких примесей и каталитических ядов, поэтому он был бы очень хорош как топливо, особенно в топливных элементах.

Считается, что получение кислорода при электролизе воды - побочный процесс. Но разве можно переоценить важность самого кислорода? Когда-то Берцелиус сказал: «Кислород является центром, вокруг которого вращается вся химия». Это высказывание применимо и к промышленной химии: трудно найти химическое производство, в котором не использовались бы окислительные свойства кислорода воздуха. Для интенсификации процессов все чаще применяют чистый кислород. Особенно распространены такие процессы в цветной и черной металлургии, где они дают большой экономический эффект. Так, применение обогащенного кислородом дутья на Усть-Каменогорском свинцово-цинковом комбинате позволило значительно снизить расход топлива и флюсов и в конечном счете, несмотря на затраты, связанные с производством кислорода, дало многомиллионную экономию.

Электролиз воды может быть особенно рентабелен, когда нужно, помимо водорода и кислорода, получать еще и тяжелую воду, используемую как замедлитель нейтронов в ядерных реакторах. Тяжелая вода была впервые получена в середине 30-х годов американцем Гильбертом Льюисом (1875-1946) и Александром Ильичей Бродским (1895-1969) именно методом электролиза. Оказалось, что она разлагается током в пять раз медленнее обычной и поэтому концентрируется в электролизере.

Вернемся, однако, к водороду. Учитывая, что он важен не только как химический продукт, но и как топливо для двигателей внутреннего сгорания и для топливных элементов, ученые ищут способы повышения рентабельности его электролитического производства. Это ведь самое, как мы уже сказали, калорийное и экологически чистое горючее. Есть ли у электролитического водорода будущее, пока неясно: он дорог. Но ясно, что последнее слово в получении водорода еще не сказано. Привлекателен и, возможно, перспективен способ прямого преобразования солнечной энергии в химическую - фотолиз. При попадании кванта света на полупроводник генерируются свободные электроны; покидая свое место, они оставляют «дырку» - носитель положительного заряда.

Благодаря положительным зарядам на фотоаноде выделяется кислород. Пройдя по внешней цепи к металлическому катоду, электроны превращают ион водорода сначала в атомарный, а затем в молекулярный водород. В качестве фотоанода используется двуокись титана, фосфид галлия или другие полупроводники. Достигнутые коэффициенты преобразования еще очень малы, 1,5-2 процента; еще много проблем стоит перед исследователями, но их решение - вопрос времени.

Читателю уже понятно, что все электрохимические процессы являются окислительно-восстановительными, так как сопровождаются потерей или присоединением электронов. При этом на катоде проходят реакции электровосстановления, а на аноде - реакции электроокисления. Синтез сложных неорганических и органических соединений с помощью электролиза получил название электросинтеза. Процессы синтеза, как правило, многостадийны; каждой стадии соответствует определенное значение электродного потенциала. Методом электроокисления получают содержащие кислород соединения хлора с разной степенью окисленности, надсерную кислоту и ее соли, перманганат калия. Более 80 процентов окислителя для реактивного топлива - перекиси водорода и целый ряд других окислителей - гипохлорид натрия, хлораты, прехлораты, хлорная кислота, двуокись марганца и еще ряд соединений, широко используемых в технике и различных отраслях промышленности, - все это продукты электроокисления. Без неорганических окислителей и других веществ, получаемых методами электросинтеза, современную химию и представить себе невозможно.