Эйфелева башня и индийская колонна

Железо ржавеет. Из-за различного физико-химического воздействия внешней среды разрушаются и другие металлы. Ежегодно от коррозии теряется около трети годового производства металла. Потери исчисляются десятками миллиардов долларов, евро, рублей. И беда не только в том, что просто пропадает металл, — нет, разрушаются конструкции, на которые был тоже затрачен труд, ржавеют мосты, машины, крыши, памятники.

Как символ достижения техники XIX в. в Париже по случаю Всемирной выставки 1889 г. была воздвигнута Эйфелева башня. В XX в. она служила радиоантенной, потом — телеантенной. На башню стали водить туристов. Постепенно она сделалась таким же символом Парижа, как Кремль — символом Москвы, статуя Свободы и небоскребы — символами Нью-Йорка. Но башня неизлечимо больна — она изготовлена из обычной стали и неудержимо ржавеет и разрушается.

С тех пор как человек научился изготовлять предметы из металла, а это было не менее 4500 лет назад, он борется с коррозией. Эйфелева башня не простояла бы столько лет, если бы ее не красили уже семнадцать раз, отчего ее масса (9000 тонн) каждый раз увеличивалась на 70 тонн. Она — предмет постоянной заботы парижских властей.

Имеются и примеры поразительной стойкости некоторых металлических сооружений. Кто не слышал о железной колонне во дворе минарета Кутуб-Минар в Дели! Она стоит уже тысячу лет, и хоть бы что! Говорят, один иностранец решил раскрыть тайну этого нержавеющего железа и каким-то образом отколол небольшой кусочек от колонны. Каково же было его удивление и разочарование, когда еще на корабле по пути из Индии он заметил, что металл покрылся ржавчиной. В конце концов ученые предположили, что стойкость индийского железа объясняется присутствием в атмосфере Дели большого количества аммиака и тем, что в металле отсутствует сера — результат выплавки железа на древесном, а не на каменном угле: в древесном серы нет. К сожалению, такие стойкие конструкции, как эта колонна, на Земле большая редкость.

Заметные успехи в борьбе с коррозией появились лишь после того, как было установлено, что коррозия во многом имеет электрохимический характер. Немалую роль в понимании механизма коррозии сыграли исследования академика В. А. Кистяковского, члена-корреспондента АН СССР Н. А. Изгарышева (1884—1956) и члена-корреспондента АН СССР Г. В. Акимова (1901 — 1953). Георгию Владимировичу Акимову мы также обязаны созданием первой в нашей стране научной коррозионной лаборатории и первой в мире кафедры коррозии, основанной в 1931 г. в Московском институте цветных металлов.

Электрохимическая теория коррозии, справедливо отмечал академик Я. М. Колотыркин, «указала путь не только к оценке химического сопротивления металлов и сплавов, но и к повышению их стойкости за счет направленного легирования самого металла, модифицирования агрессивной среды и регулирования потенциала».

Коррозия многолика. Стойкость конструкционных материалов в отличие от их механических характеристик и физических свойств зависит от природы, состава и структуры самого материала, от технологической среды и условий эксплуатации. Пусть в ничтожном количестве, но почти любой металл содержит примеси. Поэтому разрушение часто носит локальный характер, начинаясь там, где находится скопление примеси. Особенно это стало опасно в последние годы, когда условия эксплуатации по сравнению с 30—40-ми годами стали жестче, суровее: коррозионное растрескивание металла недопустимо в изделиях очень многих отраслей промышленности — авиационной, химического и атомного машиностроения, нефтяного машиностроения.

Если среда электропроводна, а это бывает почти всегда, то на поверхности металла протекают электрохимические реакции: на аноде идет окисление металла, на катоде — восстановление. Скорость этих процессов подчиняется законам электрохимической кинетики. Казалось бы, в проводящих средах поверхность металла имеет повсюду одинаковый потенциал, разности потенциала нигде быть не должно, а следовательно, не должно быть и электрохимических реакций. Но нет! Разность создается и наличием в конструкции разных металлов и одинаковых, но по-разному обработанных (металл, подвергнутый, например, механической обработке, и металл после обжига образуют гальваническую пару), и наличием узких зазоров и тонких неэлектропроводных пленок, даже различной аэрацией среды, и коррозия начинает разъедать металл.

Весьма интенсивно идет она в тех случаях, когда два различных металла находятся в электрическом контакте с поверхностной пленкой атмосферной влаги, которая служит электролитом. С увеличением глубины концентрация кислорода в воде уменьшается. Это значит, что на определенной глубине на опущенном в воду металле, допустим, на обшивке корпуса корабля, будет достигнут равновесный потенциал реакции восстановления кислорода. Поверхность, находящаяся ближе к ватерлинии, поведет себя в этом случае как катод, а находящаяся глубже — как анод. На аноде же металл и начнет разрушаться.

Та же ситуация складывается в трубопроводах, если концентрация кислорода в грунте различна. На поверхность металла попадает капля влаги, тотчас в центре капли, где кислорода мало, металл становится анодом и растворяется, а роль катода начинают играть края капли, более доступные влиянию кислорода. На краях будет осаждаться гидроокись металла.

В городах, где имеется сеть трамвайных линий, кабелей, проводов и труб, металл разъедает коррозия, возникающая под действием блуждающих токов. При действии на металл активаторов, вроде ионов хлора, начинается так называемая питтинговая коррозия. Очень опасна межкристаллитная коррозия; она идет вдоль сварных швов. Коррозию увеличивают механическая нагрузка, трение, высокие скорости потока. В борьбе с коррозией ученые и инженеры применяют более стойкие материалы: алюминий, титан, различные сплавы, пластмассы. Благодаря тому что на поверхности алюминия образуется тонкий слой окисла, предохраняющий расположенный под ним металл от дальнейшей коррозии, разрушается он не так быстро, как железо. Магний тоже защищен от коррозии пленкой окисла. Хорошая защитная пленка образуется на поверхности сплавов железа с хромом. Эти сплавы и есть всем известная нержавеющая сталь. Из ее листов собрана знаменитая скульптура Мухиной «Рабочий и колхозница» у северного входа на ВДНХ в Москве. А находящийся неподалеку от нее, у вестибюля метро, монумент в честь покорения космоса, сделанный в виде 99-метрового шлейфа, изготовлен из отшлифованных до блеска листов титана. Он простоит сотни лет. Из титана сделан и памятник Юрию Гагарину в Москве.

Металлурги создали десятки легированных сплавов, медленно поддающихся коррозии, а химики — десятки способов уменьшения количества веществ, вызывающих коррозию в тех средах, где приходится находиться металлическим конструкциям. Для защиты оборудования изобретены особые вещества — ингибиторы, уменьшающие коррозию в сотни и тысячи раз. Это органические соли и кислоты, амины, хроматы, фосфаты. Чтобы уберечь металлические поверхности от ржавчины, их покрывают органическими и неорганическими веществами, красками, лаками, анодируют, фосфатируют, оксидируют, хромируют. Изделия из железа оцинковывают. Если цинковое покрытие разрушается, возникает гальваническая пара: цинк становится анодом, железо — катодом, и тогда коррозионному воздействию подвергается цинк, а на железе идут восстановительные процессы, и его коррозия начинается лишь после того, как прокорродирует весь цинк. Об этих тонкостях хорошо осведомлены кровельщики.

Аналогичным образом защищают от коррозии металлические трубы подземных нефтепроводов и газопроводов, мачты электропередач, железнодорожные рельсы, конструкции в портах и доках. Менее благородный металл (цинк, например) не обязательно используют для покрытия; достаточно соединить проводником два металла. Магниевый анод окружают смесью гипса, сульфата натрия и глины, чтобы обеспечить проводимость ионов, и соединяют с трубой. Труба в этом гальваническом «элементе» играет роль катода и поэтому не корродирует. Этот метод получил название протекторной защиты, или защиты с жертвенным анодом.

Катодной поляризации защищаемого металла можно добиться и наложением тока от внешнего источника, подключением, например, трубы к его отрицательному
полюсу. Тогда на защищаемой конструкции идут катодные процессы, а анодные, обусловливающие коррозию, протекают на вспомогательном электроде. За последние годы разработан и метод анодной защиты. Его применяют к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону, иначе говоря, к металлам, на поверхности которых может при анодной поляризации образовываться пассивная пленка. Эта пленка и защищает металл от коррозии.

Для борьбы с блуждающими токами на подземных металлических сооружениях служит электродренаж: опасные в коррозионном отношении анодные зоны сооружений соединяют с источниками блуждающих токов (трамвайными рельсами, кабелями). Ток идет тогда по металлическому проводнику, и анодная реакция, при которой металл растворяется, не возникает.

Весьма эффективны комбинированные методы защиты. В дополнение к покрытию трубопроводов и газопроводов различными изоляционными материалами на них налагают катодную или анодную защиту, предохраняющую металл от коррозии в местах повреждения изоляционного слоя.