Какие они, эти ионы?

После создания гальванического элемента Джону Даниелю пришла еще одна прекрасная мысль. Он догадался, наконец, какие они, эти ионы.

Законы электролиза предполагали, что два иона, происходящие от одной молекулы, обладают равными по величине и противоположными по знаку электрическими зарядами. Но что собой представляют эти ионы? Берцелиус считал, что электродвижущая сила «рвет» силы химического сродства, и при электролизе, например, сернокислого калия получается электроположительная частица К2О и отрицательная SO3 . Но если состав соли выразить, как K2OSO3 (а по Берцелиусу, он получается именно таким), то не понятно, почему тот же ток в одном случае в состоянии только разложить воду на водород и кислород, тогда как в другом он разлагает столько же воды и, кроме того, еще выделяет на аноде SO3 и на катоде К2О . Допущение электролиза воды и одновременного разложения воды и соли на ангидрид и основание вело к противоречию с законами Фарадея.

В письме к Фарадею Даниель изложил свои соображения. Все придет в гармонию, писал он, если в солях содержащих кислород кислот, металл рассматривать в качестве одного иона, а кислотную группу - в качестве другого. Когда электроды электролитической ячейки сделаны из платины или другого химически стойкого металла, в результате электролиза появляется анион, который соединяется с водой, образуя серную кислоту и кислород, который и выделяется. Если же анод сделан из меди или цинка, то анион соединяется с таким металлом и образуется либо сульфат меди, либо сульфат цинка соответственно.

Так, опираясь на количественные измерения продуктов электролиза, Даниель дал правильное объяснение состава анионов и катионов солей.

5 апреля 1881 г. в Лондоне в своей речи в память Фарадея Гельмгольц развил идею о свободных ионах, заряженных  определенным  количеством  положительного  или отрицательного электричества. Он подчеркнул, что каждая эквивалентная единица элементарного иона заряжена определенным, неделимым количеством электричества - «электрическим атомом».

Эта фарадеевская речь Гельмгольца идейно подготовила учение об электронах, она заставила химиков обратить внимание на исследование физиков и вспомнить электрохимическую теорию Берцелиуса, которую он выдвинул в 1811 г. и в которой присутствовало атомистическое представление об электричестве. К этой же мысли склонялся и Фарадей. «Атомы тел, эквивалентные друг другу в отношении их обычного химического действия, - писал он, - содержат равные количества электричества, естественно связанного с ними». Концепция атомного строения электричества получила в работах Фарадея количественное подтверждение.

Казалось, в постоянном повторении одних и тех же понятий вроде «порций электричества» подразумевается именно атомное строение электричества. Но это было не так. Речь шла о свойстве материи заряжаться определенным количеством, а не о свойстве самого электричества.

Впрочем, исходя из законов Фарадея, доказать атомное строение электричества еще нельзя. Ведь Фарадей говорил о количестве электричества, которое переносится ионами во время электролиза. Отсюда как следствие вытекало, что ионы заряжаются лишь определенным количеством электричества. Как бы там ни было, но в 70-80-х годах XIX в. представления о структуре электрического заряда были весьма неопределенными. Тем не менее Максвелл в своих работах пришел к выводу, что «атомный заряд имеет постоянную величину», и назвал ее «молекулой электричества».

Но дальше великий физик не пошел. Он даже считал, что это в будущем окажется ненужным. В 1871 г. идею электрического атомизма высказал немецкий физик Вильгельм Вебер (1804-1891). Он даже построил первую электронную модель атома. Вебер сказал: «При всеобщей распространенности электричества мы имеем право принять, что с каждым весовым атомом связан электрический атом».