Закон Джоуля - Ленца

В июле 1840 г. судно, на котором служил врачом Роберт Майер (1814-1878), стояло у острова Ява. Одному матросу надо было сделать операцию, и Майер был поражен, увидев, как светла у того венозная кровь. Неужели он задел артерию? Нет! Потом ему сказали, что у экватора венозная кровь всегда светлее, чем в северных широтах. И его осенило: в жарком климате для поддержания нормальной температуры тела должно сгорать (окисляться) в организме меньше пищи, чем в холодных странах. Он установил также, что количество сгораемых продуктов в организме при выполнении работы возрастает с увеличением ее объема. Сопоставив два этих явления, Майер сделал гениальный вывод: так как и теплота и работа могут быть получены за счет химических реакций, то они могут превращаться друг в друга. Спустя два года он вычислил механический эквивалент теплоты.

Вскоре ту же идею выдвинули англичанин Джеймс Джоуль (1818-1889) и молодой немецкий физиолог и физик Герман Гельмгольц (1821-1894). Подход к идее сохранения и превращения энергии у каждого был различным. Если Майера поразила связь количества необходимой организму пищи с его температурой и работой, то Джоуля привели к этой идее опыты, которые он ставил, чтобы определить, может ли изобретенный им электрический двигатель стать практическим источником работы, получая энергию от батареи, где расходовался дорогой цинк.

При решении этой задачи Джоуль пользовался весьма большими токами и заметил, что проводники сильно нагревались. Он понимал, что часть тока тратится на нагревание, и решил выяснить, что же нужно сделать, чтобы эти потери были наименьшими. Решение технической задачи привело его, таким образом, к открытию закона: «количество образующейся теплоты пропорционально квадрату силы тока, сопротивлению в цепи и времени протекания тока».

Нужно сказать, что, несмотря на такую четкую формулировку и превосходное экспериментальное обоснование, сообщение Джоуля на заседании Королевского общества ни на кого почти не произвело особого впечатления и, возможно, не было бы оценено по достоинству, если бы не один молодой человек, который своими дельными замечаниями возбудил у публики интерес к идее Джоуля. Это был Уильям Томсон, в будущем один из крупнейших физиков мира. Юноша этот оказался настолько прозорливым, что, несмотря на ряд несовпадений в измерениях Джоуля, усмотрел в его сообщении новый важный закон. Когда немного позже, в 1844 г., свои результаты опубликовал выдающийся физик-экспериментатор, преемник В. В. Петрова, русский академик Эмилий Христианович Ленц (1804-1865), в этом уже никто не сомневался. Закон теплового действия тока вошел в физику как закон Джоуля - Ленца.

Джоуль считал, что вся теплота в цепи электрического тока должна рассматриваться как результат химического процесса. Он предполагал, что ток только одно и делает, что отводит теплоту от места реакции и выделяет ее в цепи. Пользуясь законом Джоуля-Ленца, Гельмгольц показал, что вся теплота электрической цепи равна произведению напряжения на прошедшее количество электричества, а если учесть и законы Фарадея, можно сказать: ЭДС гальванического элемента пропорциональна тепловому эффекту химической реакции в элементе.

Вернемся теперь к юному Уильяму Томсону. В десятилетнем возрасте Томсон уже поступил в университет, а в двадцать был известен как автор оригинальных научных работ. В двадцать два профессор Томсон, позже известный как лорд Кельвин (1824-1907), разносторонний ученый, давший одну из формулировок второго начала термодинамики, предложивший абсолютную шкалу температур, открывший ряд эффектов, носящих его имя, автор ряда приборов, был уже членом Лондонского Королевского общества.

Воспользовавшись током от элемента Даниеля - Якоби, он привел в действие простейший электрический двигатель и вычислил его работу. С помощью механического эквивалента теплоты он перевел эту механическую работу в калории и обнаружил, что рассчитанная величина теплоты полностью совпадает с теплотой реакции, протекающей в гальваническом элементе. Стало ясно, что ЭДС элемента пропорциональна тепловому эффекту происходящей в нем реакции. Этот факт воспринимался как следствие закона сохранения энергии. В этот период открытия законов термодинамики казалось, что все явления природы в целом могут быть объяснены простыми наблюдениями над механической энергией и работой.

Работы Александра Беккереля (1820-1891) тоже показывали, что электродвижущая сила цепи эквивалентна соответствующему ей химическому действию. Однако применение подобных же расчетов к другим элементам через некоторое время показало, что не вся химическая энергия переходит в гальваническую.