Уравнение Гиббса - Гельмгольца

В 1882 г. независимо от Гиббса точно такое же уравнение вывел один из крупнейших естествоиспытателей XIX в. Герман Гельмгольц. В молодые годы, работая военным хирургом (почти как Роберт Майер, который тоже делал хирургические операции), он сформулировал и математически обосновал закон сохранения энергии. Спустя год он изобрел глазное зеркало (офтальмоскоп) и впервые как следует разглядел сетчатку. Он измерил скорость прохождения нервного импульса и выполнил ряд фундаментальных работ в физиологии и гидродинамике.

Выведенное им уравнение (уравнение Гиббса - Гельмгольца) связывало электрическую и химическую энергию: максимальная работа гальванического элемента состоит из теплового эффекта химической реакции и зависит от абсолютной температуры. У второго члена уравнения стоит коэффициент К, показывающий изменение ЭДС элемента от температуры. Если К равен нулю, то электрическая работа равна тепловому эффекту реакции. По случайному совпадению это реализовалось в элементе Даниеля - Якоби, с которого началось изучение-термодинамики гальванических элементов. Для многих других элементов, к удивлению ученых, такого равенства не получалось. Совершаемая большинством элементов работа меньше теплового эффекта: часть тепла выделяется и температура элемента поэтому повышается. Это значит, что коэффициент в уравнении Гиббса - Гельмгольца отрицателен. Впоследствии было показано, что могут существовать электрохимические системы, работа которых создается за счет тепла окружающей среды, тогда коэффициент в уравнении бывает положителен.

Для химии эта теория имеет большое значение. Тепловой эффект некоторых реакций трудно определить экспериментально, иногда невозможно. Тогда и прибегают к уравнению Гиббса - Гельмгольца: измеряют ЭДС такой системы при различных температурах и рассчитывают эффект реакции.

В соответствии с химической теорией возникновения электродвижущей силы на электродах гальванического элемента должна устанавливаться разность потенциалов, величина которой зависит от материала электрода. Это было ясно при сравнении ЭДС с рядом напряжения соответствующего металла. Кроме того, было ясно, что нужно затратить меньше работы, чтобы выделить ион из концентрированного раствора, чем из неконцентрированного. Иными словами, ЭДС элемента должна зависеть и от концентрации катионов в растворах у электродов.