Сложность процессов, происходящих в двойном слое

Как же выглядит после всех уточнений картина границы разделения металл-раствор? Слой, непосредственно примыкающий к металлу, состоит из молекул воды или другого растворителя, диполи которых ориентированы к поверхности металлического электрода. Здесь или очень близко отсюда находятся и ионы (скорее всего катионы), слабо гидратированные или склонные к сильной адсорбции на металле. Это плотная часть двойного слоя. Сильно же гидратированные ионы не могут подойти к поверхности металла так близко и располагаются за внешней плоскостью Гельмгольца, от которой в объем раствора простирается диффузная часть слоя. При высоких концентрациях электролита концентрация адсорбированных ионов возрастает и диффузная часть слоя сжимается. Свойства границы раздела фаз приближаются тогда к свойствам двойного слоя Гельмгольца. При очень низких концентрациях электролита диффузная часть слоя начинает играть все более важную роль.

Диффузная область двойного слоя существует не только в растворе. Как это ни странно, но такая же область появляется и в полупроводниковом электроде, для которого характерна умеренная диэлектрическая проницаемость и низкая концентрация носителей заряда в отличие от металла, где концентрация носителей заряда высока и на поверхности образуется плотный слой. Двойной электрический слой мы обнаруживаем и на границе раздела электролит - изолятор, если на изоляторе есть фиксированный заряд, который может образоваться за счет адсорбции ионов, ионного обмена между материалом и раствором и так далее. В сущности, он существует везде, где имеется поверхность, образованная химическими разнородными материалами, и возможен переход зарядов через границу раздела, существует и оказывает сильное влияние на все - на подвижность заряженных коллоидных частиц, на течение жидкости в пористом материале, на свойства пористых и других мембранных систем.

Открытый еще в 1807 г. профессором Рейссом электрофорез - движение коллоидных частиц в растворе под действием электрического тока, а также другие электрокинетические явления послужили основой для создания методов изучения двойного электрического слоя. При относительном движении твердого тела в жидкости ионы диффузной обкладки двойного электрического слоя увлекаются движущейся жидкостью, что позволяет экспериментально определить локализованный в диффузной части двойного слоя скачок потенциала, считающийся одной из важнейших его характеристик.

Французский физик Габриэль Липпман (1845-1921), изобретатель цветной фотографии, изучал в 1875 г. связь между величиной поверхностного натяжения находящейся в разбавленной серной кислоте ртути и разностью потенциалов, образующейся в месте соприкосновения ртути и кислоты. Он установил, что поверхностное натяжение ртути в месте соприкосновения ее с электролитом является функцией электродвижущей силы поляризации. После работ Липпмана многие ученые начали серьезно исследовать, как под действием электрического тока меняется форма ртутных электродов. Были разработаны специальные приборы - капиллярные электрометры. Оказалось, что зависимость поверхностного натяжения ртути от приложенного потенциала представляет собой в первом приближении перевернутую параболу.

В 1919 г. А. Н. Фрумкин доказал, что форма электрокапиллярной кривой зависит от состава раствора: адсорбция ионов меняет поверхностное натяжение ртути. Фрумкин вывел и экспериментально проверил основное
уравнение электрокапиллярности. Пользуясь этим уравнением и измеряя пограничное натяжение, можно рассчитать заряд электрода, емкость двойного электрического слоя, потенциал, при котором заряд электрода равен нулю, а также адсорбцию различных компонентов раствора на поверхности электрода. Одним словом, узнать о двойном слое практически все.

После этой работы Фрумкина, показавшего, что исследование электрокапиллярных явлений дает ценнейшие сведения о строении двойного слоя, его стали изучать на ртутном и на галлиевом электродах, на электродах из амальгам таллия и индия и из других металлов.

Был открыт ряд интересных явлений, сопутствующих электролизу, например, конкурирующий характер адсорбции из растворов, связанный с вытеснением молекул растворителя, адсорбированных ранее на электроде. Сам же Фрумкин выяснил, что строение двойного слоя у целых групп металлов имеет в основном сходные черты, а это, в свою очередь, значит, что результаты, полученные на жидких металлах, наиболее удобных в экспериментальном отношении, имеют общее значение. Он ввел в науку понятие о потенциале нулевого заряда. На электрокапиллярных кривых потенциал нулевого заряда соответствует максимуму кривой. Это понятие явилось как бы оценочным критерием поведения электрода, раскрыло его адсорбционную и кинетическую сущность.

Таким образом, самым примечательным в изучении этого необычайно сложного двойного слоя оказалось то, что наблюдения за изменением потенциала в нем стали чрезвычайно важными при определении скорости электродных процессов.