Двойной слой

В природе не существует абсолютно простых, элементарных объектов, у каждого бесконечное множество различных свойств, сложная внутренняя структура. На каждом новом этапе исследования наши представления о структуре любого объекта могут весьма отличаться от тех, которые были известны раньше. То же произошло и с представлениями о двойном электрическом слое.Впрочем, едва лишь появилась первая теория этого слоя, как многих начал смущать вопрос, почему ионы, так близко подойдя к электроду, не разряжаются на нем. Что удерживает их от разряда?

На этот вопрос дал ответ ученик и сотрудник А. Г. Столетова, профессор Казанского университета Роберт Андреевич Колли (1845-1891). В своей докторской диссертации «О поляризации в электролитах» (1878) он показал, что находящиеся в двойном слое ионы удерживаются от разряда благодаря своей связи с растворителем. Это утверждение оказалось вполне справедливым и никем по сей день не опровергнуто.

Спустя некоторое время выяснилось, что никакой изолирующей газовой пленки на электродах нет. Это еще более усилило интерес к этой границе. Как она устроена? Еще в 50-х годах прошлого столетия Георг Квинке для объяснения механизма только что открытого им так называемого потенциала протекания высказал гипотезу двойного слоя. Она оказалась весьма плодотворной в различных областях знаний. В 1881 г Гельмгольц, исследуя поляризацию, то есть сдвиг потенциала электрода под действием тока, предположил, что на границе электрод - раствор образуется двойной электрический слой зарядов: один - на металле, другой в виде ионов - у поверхности электрода.

Механизм образования этого слоя таков. При погружении металла в раствор его соли в зависимости от концентрации раствора одинаково возможен как переход ионов металла из кристаллической решетки металла в раствор, так и обратный процесс. И в том и в другом случае на электроде образуется либо избыток, либо недостаток электронов. В связи с этим к электроду притягиваются те или иные ионы. Так на границе электрода с раствором образуются два слоя противоположных зарядов: один на самом электроде, другой в растворе, в непосредственной близости от электрода.

Заряд на электроде может возникать и за счет внешнего источника тока. Тогда на одном электроде образуется избыток отрицательных зарядов, и около него располагаются катионы раствора, а на другом электроде - избыток положительных зарядов, и около него располагаются анионы. В любом случае на границе между электродом и раствором всегда образуется двойной электрический слой.

Ионы, однако, имеют вполне определенный радиус, а раз так, то их электрические центры могут подойти к поверхности электрода только на расстояние этого радиуса, от которого и зависит толщина слоя (называют его плотным слоем, а его границу в честь автора первой теории двойного электрического слоя - плоскостью Гельмгольца). Образовавшийся плоский конденсатор необычен. Расстояние между его «обкладками» равно радиусу ионов, то есть стомиллионным долям сантиметра. Если разность потенциалов равна одному вольту, то напряженность электрического тока достигает при этом миллиона вольт на сантиметр. Это очень высокая напряженность. Даже в мощных электростатических ускорителях заряженных частиц она гораздо меньше. Естественно предположить, что при такой высокой напряженности электрического поля реакционная способность веществ изменяется, изменяются вообще химические свойства вещества. На катоде такие поля способны извлечь электроны из металлов и вызвать нейтрализацию катионов. А на аноде они обусловливают начальный акт растворения - переход металла из кристаллической решетки в двойной слой в виде ионов.

1905 г. французский физик Луи Гюи (1854-1926), установивший тепловую природу броуновского движения, указал, что принятое в модели Гельмгольца строго фиксированное расположение ионов в двойном слое в действительности невозможно, так как, помимо электростатических, на ионы действуют силы, обусловленные тепловым движением молекул. Это значило, что концентрация ионов около границы раздела фаз постоянно убывает в направлении, перпендикулярном поверхности раздела. Новая модель двойного слоя получила название диффузного двойного слоя Гюи - Чапмена. Во многом она была подобна модели, которую Дебай и Хюккель создали позже для описания ионной атмосферы вокруг заряженной частицы.

Наконец, в 1924 г. Отто Штерн (1888-1969), профессор Гамбургского университета и впоследствии Нобелевский лауреат, предложил учитывать специфическую адсорбцию ионов, то есть адсорбцию, происходящую под действием химических сил. В своей модели двойного слоя он объединил модели Гельмгольца и Гюи - Чапмена. Модель Штерна объясняла явления перезарядки поверхности в электрокинетических измерениях и очень хорошо согласовывалась с экспериментальными данными.

Но в теории Штерна не учитывалось взаимодействие частиц, образующих двойной слой. Кроме того, она отождествляла локализацию специфически адсорбированных ионов с плоскостью диффузного слоя. Эти недостатки устранил в 40-х годах американский ученый Дональд Грэм. Он предположил, что существуют две плоскости Гельм-гольца: одна, внутренняя, плоскость электрических центров специфически адсорбированных ионов или молекул растворителя и другая, внешняя, плоскость центров неорганических катионов, которые специфически не адсорбируются. Таким образом, в пространстве между поверхностью металла или твердого тела и раствором имеются как бы три последовательно соединенных конденсатора: электростатическая емкость пространства между металлом и внутренней плоскостью Гельмгольца, электростатическая емкость пространства между двумя плоскостями Гельмгольца и емкость диффузного слоя.